
A Further Model Introduction

We elaborate the three core modules in our proposed ResponsibleTA, i.e., the feasibility predictor,
completeness verifier and security protector, with their modeling in Sec.3 and their used datasets
in Sec.4 in the main body of our paper. Besides these three core modules, in ResponsibleTA, we
also train a domain-specific command executor and a screen parsing model. The domain-specific
command executor aims to locate the target UI element by predicting its spatial coordinates for
automating clicking or typing operations in accordance with given commands. And the screen parsing
model converts a given screenshot into a series of element-wise descriptions in linguistic form, which
plays the role of inputting the information of a screenshot in linguistic form to the LLM-based
coordinator in two scenarios: 1) when replanning; 2) when employing the prompt engineering based
paradigms for implementing the feasibility predictor or completeness verifier, as proposed. This
model is needed in consideration to that most of LLMs have not developed or released their visual
input APIs currently. These two modules are not the highlights of this work. We thus detail them in
this supplementary material.

A.1 Domain-specific Executor

The domain-specific executor is a multimodal model that accepts both a screenshot and a command as
its inputs. It is analogous to the domain-specific model-based paradigm introduced for implementing
the feasibility predictor or completeness verifier in the main text. Inspired by Pix2Seq modeling
[4, 5], we employ the same architecture design for this model with that of the feasibility predictor
as illustrated in Figure 2 of the main text. It requires different instantiations for the structured
output format, i.e., “<task_prompt> {results} </task_prompt>”. In this model, the “<task_prompt>”
and “</task_prompt>” are instantiated by “<locate_element>” and “</locate_element>”, respec-
tively. And the “{results}” is organized as “<x_min> {xmin} </x_min> <y_min> {ymin} </y_min>
<x_max> {xmax} </x_max> <y_max> {ymax} </y_max>” wherein [xmin, ymin, xmax, ymax]
denotes the coordinates of the top-left and bottom-right points of the bounding box corresponding to
the target UI element. It achieves 0.51 mIoU for locating the target UI elements in given commands.

A.2 Screen Parsing Model

The screen parsing model aims to detect all UI elements in a given screenshot and recognize their
attributes, i.e., the location, text content, and type. Regarding the type attribute, we categorize each
UI element into one of button, input, and icon. This model is a mixture of expert models including
element detector, text detector, text recognizer, and icon recognizer. For a given UI screenshot,
the element detector first locates all UI elements. Then, for button and input elements, the text
detector locates their text regions when texts are available, and the text recognizer extracts their
text contents. For icon elements, icon recognizer recognizes their categories as the text contents.
Specifically, for element detector, we adopt RTMDet [23]-style architecture with ShuffleNetv2-1.0x
[24] backbone. It achieves 0.710 mAP on the test set introduced as follows. For text detector and text
recognizer, we employ the off-the-shelf models from PaddleOCRv3 [17]. For icon recognition, we
use ShuffleNetv2-1.0x [24] as the backbone of the icon classifier and use a fully connected layer as
the classification head. Our icon recognizer achieves 95.7% averaged accuracy on the test set.

B Further Dataset Introduction

We elaborate the datasets used for domain-specific feasibility predictor and completeness verifier
in the main text. In this section, we further introduce the data for aforementioned domain-specific
executor and screen parsing model.

The dataset for domain-specific executor consists of all feasible screenshot-instruction pairs from the
feasibility prediction dataset introduced in Sec.4.1 of the main text. Its training split contains 0.5M
samples from 38K desktop screenshots, and its testing split contains 27K samples from 2K desktop
screenshots. For the element detector in the screen parsing model, we collect a dataset upon publicly
available web pages and windows apps, comprising around 1.5M screenshots with 1.2M of them as
the training split and 0.3M of them as the testing split. For these data, we obtain the annotations of UI
elements, i.e., their types and bounding boxes, from their tree-structure metadata, i.e., DOM [8] and
UIA [26]. Only leaf nodes are used. For the icon classifier in the screen parsing model, we build a

13

Yes, I understand your expectation and I am ready to start.

[System Prompt]:

You are a completeness verifier for task automation in Windows. Given a command that has been executed

and the descriptions for all elements on current screen, you need return Yes or No to recognize the

completeness of the given command, i.e., whether the command goal is successfully reached.

For example, you are given:

Command: “Open the sports news.”

UI elements on the current screen:
[{ID: 0, Type: “Button”, Content: “BBC homepage”}, # The type could be “button”, “icon” or “input".

{ID: 1, Type: “Button”, Content: “England defender Bronze has keyhole knee surgery.”},

{ID: 2, Type: “Button”, Content: “Spurs players reimburse fans after thrashing.”}, ……]

You should return:
{Thought: “There are element contents that are related to the action query: sports news, so the given command has been

completed, the answer should be yes.”, Completeness: “Yes”.}

Do you understand my expectation? And are you ready to start?

[User Query]:

Command: “*** *** ***.”

UI elements on the current screen: [{ID: *, Type: *, Content: “*** ***”}, ……]

{Thought: “∗∗∗ ∗∗∗ ∗∗∗.”, Completeness: “Yes (or No)”.}

Figure 5: Illustration of our prompt engineering based paradigm for implementing the completeness
verifier in our proposed ResponsibleTA.

dataset based on a public one (Rico [21]), which contains 14,043 icon images with 14 frequently used
icon categories. Its training split contains 12,637 samples while its test split contains 1,405 samples.

C More Implementation Details

C.1 Training Details

As introduced, in ResponsibleTA, the feasibility predictor, completeness verifier and domain-specific
executor share the same model architecture design as shown in Figure 3 of the main text. For this
architecture, we employ Swin Transformer [22] and BART model [16] as its vision encoder and
language decoder, respectively. For all of them, we first pretrain the entire model on document
understanding tasks introduced in [14] and then finetune it on those datasets for feasibility prediction,
completeness verification and command execution. Unless specifically stated, we perform the
finetuning on each task for 20 epochs using 8 NVIDIA V100 GPUs, with a batch size of 2 on each
GPU card. The height and width of screenshots are resized to 960 and 1280, respectively. We use
the Adam optimizer [15] and set the initial learning rate to be 1×10−4. Besides, we apply a cosine
learning rate annealing schedule and a gradient clipping technique with the maximum gradient norm
of 1.0.

C.2 Prompt Design Details

Similar to the proposed paradigms for implementing the feasibility predictor, we also introduce two
analogical paradigms for implementing the completeness verifier in our proposed ResponsibleTA.
Regarding the prompt engineering based paradigm, we detail its related prompt design as illustrated
in Figure 5 for clearer introduction and better reproducibility.

D More Experiment Results

In Figure 4 of the main text, we have depicted the automation process of the first five steps on a
specific task (i.e., Task 9 in Table 2 of our main text) to show how our proposed feasibility predictor
and completeness verifier pla their roles in turning an originally failed case into a successful one.
Here, in Sec.D.1, we provide its complete version with its part-1 (from the beginning to the 6-th step)
illustrated in Figure 6 and its part-2 (from the 7-th step to the end) illustrated in Figure 7. Furthermore,
we provide a failure case (illustrated in Figure 8) and its analysis in Sec.D.2.

14

D.1 A Successful Case and Its Analysis

Note that the in-depth analysis for the part-1 of this case is in Sec.4.3 of the main text. We provide
the detailed analysis regarding its part-2 here. As shown in Figure 7, the GPT-4 based coordinator in
ResponsibleTA originally plans to click the button with the content of “cheapest charger”. However,
in the real web page, there is no matched element on the current page. At this time, the feasibility
predictor considers this planned command as an infeasible one before execution, and asks the
coordinator for a replanned command upon the information of the current page. Then, the coordinator
thinks we should click the element containing charge information with the smallest y-coordinate so
that this step is correctly processed. The coordinator plans for the next step, i.e., adding the selected
item to the shopping cart. It gives an infeasible command again since there is no “add to chart” item
on the current page. This planned goal requires two execution operations to be completed in actual.
With the help of the feasibility predictor and completeness verifier, our ResponsibleTA utimately
achieves the purpose of adding the item to the shopping cart by clicking the “See All Buying Options”
button followed by the “Add to Cart” button. As such, the human instruction “Go to Amazon and add
the cheapest charger into the shopping cart.” is successfully automated.

From the detailed analysis of this case, we can intuitively understand the functions of the feasibility
predictor and completeness verifier in ResponsibleTA. In specific, the feasibility predictor can
intercept unreasonably planned commands. And the completeness verifier checks whether the actual
executed operations have achieved the intended goals step-by-step. They serve as a double guarantee
for ResponsibleTA to responsibly achieve task automation before and after command execution, by
providing feedbacks for the coordinator so that it can perform replanning timely.

D.2 A Failure Case and Its Analysis

We describe a failure case (i.e., the No.12 task in Table 2 of our main paper) that the feasibility
predictor and completeness verifier cannot remedy, as illustrated in Figure 8. This failure happens in
automating the human instruction “Search the Cpython repo and download its zip file in github.com.”.
In most GitHub repositories, we can achieve the download purpose by directly clicking the "Download
ZIP" button. However, in some GitHub repositories, such as the one in our illustrated failure case, the
"Download ZIP" button is hidden in a secondary menu. In this case, we are required to complete the
download of the ZIP file through two operations: first clicking the "Local" button, and then clicking
the "Download ZIP" button. As shown in Figure 8, although our proposed module accurately detects
that the commands given by the coordinator are infeasible, the coordinator has not been able to
provide correct and feasible commands via its replanning. This task is ultimately terminated when
the preset maximum number of replanning attempts is reached. This failure case implies that the
knowledge of current LLMs is generic but may not be perfect, and there is room for our proposed
ResponsibleTA to become more powerful as the capabilities of LLMs improve.

15

[ResponsibleTA – Coordinator]: (# replanning)

[Step-5] {Thought: “The task is about sorting the results by price. The No.128 element has

the content 'Sort by:Featured', which seems to be the sorting button. I should click it.”,

Action: “Click”, Element Type: “Button”, Element Content: “sort by: featured”}.

[Human]: Go to Amazon and add the cheapest charger into the shopping cart.

[ResponsibleTA – System]: Received! Calling GPT-4 for task planning …

[ResponsibleTA – Coordinator]:

[Step-1] {Thought: “We should open Edge browser to reach a website.”,

Action: “Open App”, App Name: “Edge” }.

[Step-2] {Thought: “We should write the url to reach a website.”,

Action: “Input”, Input Content: “amazon.com\n”}.

[Step-3] {Thought: “We should click on the search input field.”,

Action: “Click”, Element Type: “Input field”, Element Content: “search”}.

[Step-4] {Thought: “We should input the search query.”,

Action: “Input”, Input Content: “charger\n”}.

[Step-5] {Thought: “We should sort the results by price.”,

Action: “Click”, Element Type: “Button”, Element Content: “sort by price”}.

[ResponsibleTA – Feasibility Predictor]: {Feasible: “No”} (# before execution)

(# Reason: No valid element “sort by

price” on the current page.)

[ResponsibleTA – Completeness Verifier]: {Completed: “No”} (# after execution)

(# Reason: Need a further step for

reaching the goal of the planned step-5.)

[ResponsibleTA – Coordinator]: (# replanning for the step-6)

[Step-6] {Thought: “The task is to sort the results by price. The No.132 element has the

content 'Price: Low to High', which is the button to sort the results by price.”,

Action: “Click”, Element Type: “Button”, Element Content: “price: low to high”}.

Figure 6: Illustration of a successful case (i.e., the No.9 task in Table 2 of our main paper) about how
our proposed feasibility predictor and completeness verifier in ResponsibleTA remedy the failure
case to achieve success. This figure depicts the part-1 of its complete version, i.e., from the 1-th step
to the 6-th step. GPT-4 [27] is used as the LLM-based coordinator.

16

[ResponsibleTA – Coordinator]: (# replanning for the step-7)

[Step-7] {Thought: “The task is about selecting the cheapest charger. The ID 138, ID 152,

and ID 164 elements are the three elements containing charger information. The cheapest

charger should be the one with the smallest y-coordinate among the charger elements. The

ID 138 element is the one with the smallest y-coordinate among them.”,

Action: “Click”, Element Type: “Button”, Element Content: “new battery charger”}.

[ResponsibleTA – Coordinator]:

[Step-8] {Thought: “'I should add the charger to the shopping cart.”,

Action: “Click”, Element Type: “Button”, Element Content: “add to chart”}.

[ResponsibleTA – Coordinator]:

[Step-7] {Thought: “I should select the cheapest charger.”,

Action: “Click”, Element Type: “Button”, Element Content: “cheapest charger”}.

[ResponsibleTA – Feasibility Predictor]: {Feasible: “No”} (# before execution)

(# Reason: No valid element “cheapest

charger” found on the current page.)

[ResponsibleTA – Coordinator]: (# replanning for the step-8)

[Step-8] {Thought: “The task is about adding the cheapest charger to the shopping cart.

The ID 147 element is the charger, and the ID 148 element is the 'See All Buying Options'

button which should be clicked to add the charger to the cart.”,

Action: “Click”, Element Type: “Button”, Element Content: “see all buying options”}.

[ResponsibleTA – Feasibility Predictor]: {Feasible: “No”} (# before execution)

(# Reason: No valid element “add to chart”

found on the current page.)

[ResponsibleTA – Completeness Verifier]: {Completeness: “No”} (# after execution)

(# Reason: Need a further step for

reaching the goal of the planned step-8.)

[ResponsibleTA – Coordinator]: (# replanning for the step-9)

[Step-9] {Thought: “The task is to add the cheapest charger to the shopping cart. And the

ID 138 element is the ‘add to chart’ button.”,

Action: “Click”, Element Type: “Button”, Element Content: “add to chart”}.

Figure 7: Continuing from the Figure 6 in this supplementary material, this figure depicts the part-2
of the complete automation process of No.9 task, i.e., from the 7-th step to the end.

17

[ResponsibleTA – Coordinator]: (# replanning for the step-7)

[Step-5] {Thought: “The task is to download Cpython repo as zip in github.com by

clicking the 'Download ZIP' option. The element with the 'Download ZIP' content is the one

we need to click.”,

Action: “Click”, Element Type: “Button”, Element Content: “Download ZIP”}.

[Human]: Search the Cpython repo and download its zip file in github.com..

[ResponsibleTA – System]: Received! Calling GPT-4 for task planning …

[ResponsibleTA – Coordinator]:

[Step-1⋯𝟔] ⋯⋯
[Step-7] {Thought: “We should click the ‘Download ZIP’ option.”,

Action: “Click”, Element Type: “Button”, Element Content: “Download ZIP”}.

[ResponsibleTA – Feasibility Predictor]: {Feasible: “No”} (# before execution)

(# Reason: No valid element “Download ZIP” on the current page.)

[ResponsibleTA – Feasibility Predictor]: {Feasible: “No”} (# before execution)

Reason: No valid element “Download ZIP” on the current page.

The ground-truth actions (from human) for the remaining steps:

Step-7 Step-8

Figure 8: Illustration of a failure case (i.e., the No.12 task in Table 2 of our main paper). The first six
steps are omitted in this figure for the brevity. GPT-4 [27] is used as the LLM-based coordinator.

18

	Introduction
	Related Works
	Development of Large Language Models
	Large Language Models for Task Automation

	Method
	ResponsibleTA Framework
	Feasibility Predictor
	Completeness Verifier
	Security Protector

	Experiments
	Datasets and Implementation Details
	Quantitative Results
	Case Study and Demonstration

	Limitation
	Conclusion and Broader Impact
	Further Model Introduction
	Domain-specific Executor
	Screen Parsing Model

	Further Dataset Introduction
	More Implementation Details
	Training Details
	Prompt Design Details

	More Experiment Results
	A Successful Case and Its Analysis
	A Failure Case and Its Analysis

